Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Document Type
Year range
2.
EMBO J ; 40(24): e110041, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1524663

ABSTRACT

The most severe forms of coronavirus disease 2019 (COVID-19) are often associated with the presence of syncytia in the lungs resulting from cell-cell fusion mediated by the SARS-CoV-2 spike protein. In this issue, Rajah and colleagues show that the SARS-CoV-2 alpha, beta, and delta variants promote enhanced syncytia formation as compared to the original strain.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Spike Glycoprotein, Coronavirus/genetics
3.
EMBO J ; 40(16): e107821, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1280957

ABSTRACT

SARS-CoV-2 is a newly emerged coronavirus that caused the global COVID-19 outbreak in early 2020. COVID-19 is primarily associated with lung injury, but many other clinical symptoms such as loss of smell and taste demonstrated broad tissue tropism of the virus. Early SARS-CoV-2-host cell interactions and entry mechanisms remain poorly understood. Investigating SARS-CoV-2 infection in tissue culture, we found that the protease TMPRSS2 determines the entry pathway used by the virus. In the presence of TMPRSS2, the proteolytic process of SARS-CoV-2 was completed at the plasma membrane, and the virus rapidly entered the cells within 10 min in a pH-independent manner. When target cells lacked TMPRSS2 expression, the virus was endocytosed and sorted into endolysosomes, from which SARS-CoV-2 entered the cytosol via acid-activated cathepsin L protease 40-60 min post-infection. Overexpression of TMPRSS2 in non-TMPRSS2 expressing cells abolished the dependence of infection on the cathepsin L pathway and restored sensitivity to the TMPRSS2 inhibitors. Together, our results indicate that SARS-CoV-2 infects cells through distinct, mutually exclusive entry routes and highlight the importance of TMPRSS2 for SARS-CoV-2 sorting into either pathway.


Subject(s)
COVID-19/metabolism , Cathepsin L/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Animals , COVID-19/genetics , Caco-2 Cells , Chlorocebus aethiops , Endocytosis , Host Microbial Interactions , Humans , Hydrogen-Ion Concentration , Proteolysis , Serine Endopeptidases/genetics , Signal Transduction , Vero Cells , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL